Friday, 19 December 2014

Hydrochloric Acid Production of the Stomach


Gastric acid is a digestive fluid, formed in the stomach. It is composed of hydrochloric acid (HCl) (around 0.5%, or 5000 parts per million) as high as 0.1 M,[1] potassium chloride (KCl) and sodium chloride (NaCl). The acid plays a key role in digestion of proteins, by activating digestive enzymes, and making ingested proteins unravel so that digestive enzymes break down the long chains of amino acids. Gastric acid is produced by cells lining the stomach, which are coupled in feedback systems to increase acid production when needed. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring that it does not become too acidic. These cells also produce mucus, which forms a viscous physical barrier to prevent gastric acid from damaging the stomach. Cells in the beginning of the small intestine, or duodenum, further produce large amounts of bicarbonate to completely neutralize any gastric acid that passes further down into the digestive tract.

Gastric acid is produced by parietal cells (also called oxyntic cells) in the stomach. Its secretion is a complex and relatively energetically expensive process. Parietal cells contain an extensive secretory network (called canaliculi) from which the gastric acid is secreted into the lumen of the stomach. These cells are part of epithelial fundic glands in the gastric mucosa. The pH of gastric acid is 1.5 to 3.5 [2] in the human stomach lumen, the acidity being maintained by the proton pump H+/K+ ATPase. The parietal cell releases bicarbonate into the bloodstream in the process, which causes a temporary rise of pH in the blood, known as alkaline tide.

The resulting highly acidic environment in the stomach lumen causes proteins from food to lose their characteristic folded structure (or denature). This exposes the protein's peptide bonds. The gastric chief cells of the stomach secrete enzymes for protein breakdown (inactive pepsinogen and rennin). Hydrochloric acid activates pepsinogen into the enzyme pepsin, which then helps digestion by breaking the bonds linking amino acids, a process known as proteolysis. In addition, many microorganisms have their growth inhibited by such an acidic environment, which is helpful to prevent infection.

Tags: , , , , ,

0 Responses to “Hydrochloric Acid Production of the Stomach”

Post a Comment

Subscribe

Donec sed odio dui. Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio. Duis mollis

© 2013 welcome. All rights reserved.
Designed by SpicyTricks